Forecasting Growth After the Pandemic

David G. Tucek Value Economics, LLC

http://www.valueeconomics.com/ 314 434 8633 david.tucek@valueeconomics.com

© 2023

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

.

Why This Topic?

- · Short Answer: The Great Disruption
 - Covid 19 pandemic
 - China's zero-Covid policy and subsequent relaxation
 - Supply chain disruptions
 - War in Ukraine
 - Inflation spike in the U.S. and elsewhere
 - Monetary tightening in the U.S. and elsewhere
 - Uncertainty surrounding the impact of QT

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Why This Topic?

· Short Answer: The Great Disruption

The ship has hit the sand.

- Two possible options:
 - Ignore all (or some) post-2019 data.
 - Consider all (or some) post-2019 data.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

1

Why This Topic?

- Ignore all (or some) post-2019 data.
 - Assumes great disruption is transitory and has no effect on the future.
 - No transition from current situation and long-run growth.
 - Nothing more than ipse dixit without an explanation of how transitory conclusion is reached or transition path is determined.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Why This Topic?

- Ignore all (or some) post-2019 data.
 - Assumes great disruption is transitory and has no effect on the future.
 - No transition from current situation and long-run growth.
 - Nothing more than ipse dixit without an explanation of how transitory conclusion is reached or transition path is determined.
- Consider all (or some) post-2019 data.
 - Assumes great disruption is not transitory and will have an impact on the future.
 - How to transition from current situation to the future?
 - Nothing more than ipse dixit without an explanation of how not transitory conclusion is reached or transition path is determined.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

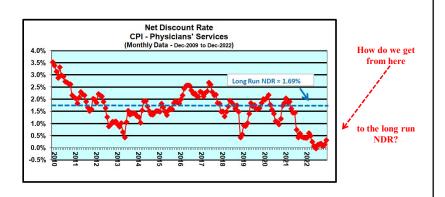
5

Why This Topic?

- Ignore all (or some) post-2019 data.
 - Assumes great disruption is transitory and has no effect on the future.
 - No transition from current situation and long-run growth.
 - Nothing more than ipse dixit without an explanation of how transitory conclusion is reached or transition path is determined.
- Consider all (or some) post-2019 data.
 - Assumes great disruption is not transitory and will have an impact on the

This presentation is a detailed look at my approach using net discount rates to

overcome these drawbacks. Both the "How" and the "Why".


Tucek - March 2, 2023

AAEFE - Las Vegas, NV

6

sitory

(Could have used a graph of the growth in the Physicians' Services CPI).

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

7

Sidetrip: How I Define a NDR

- I don't use data prior to 2000.
- I base my NDRs on the 10-year Treasury rate and 10-year growth rates, provided sufficient data exist.

(Analysis of Ibbotson total return data suggests 10-year Treasury rate is correlated with the return of a wide range of Treasury bond portfolios.)

- NDR for Dec-2009 is based on the log-linear trendline growth from Jan-2000 through Dec-2009 and the Jan-2000 10-year Treasury rate.
 - Growth rate period and interest rate term should match if possible.
 (See "Net Interest Rates: History and Measurement", Edward Foster, Journal of Forensic Economics (2015) 26 (1): 99-114).
 - Growth rate should follow the point in time corresponding to the interest rate. (Private communication with Ed Foster.)

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Most Important Thing to Consider When Using an NDR

- Because any NDR you use is a forecast of the future, whether or not it is stationary is always an issue.
 - In the current environment this is problematic has there been a structural shift in the long-run NDR?
 - Impossible to tell until time passes. (Nieswiadomy insight.)

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

9

My Approach to Forecasting Growth After the Pandemic

- Test for stationarity in the NDR through Dec-2019 and through current month (Dec-2022).
- If stationary, estimate an autoregressive model to determine both the long run NDR <u>and</u> the path to get there from current level.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Things to Consider When Testing for Stationarity

- Testing for stationarity is not like testing to see if a coin is fair due to uncertainty about the underlying process.
- Can't just perform one test and accept or reject the null at some binding predetermined confidence level.
- · My approach:
 - Exam the correlogram if correlations decline and become insignificant, stationarity conclusion is supported.
 - Run four tests for stationarity. (Augmented Dickey-Fuller, 2 Phillips-Perron tests, and Kwiatkowski-Phillips-Schmidt-Shin).
 - Estimate $Y_t = \alpha + \rho Y_{t-1}$ and correct OLS estimate \hat{p} for bias. (Corrected value should be less than 1). ("First Order Autoregression: Inference, Estimation, and Prediction", Guy H. Orcutt and Herbert S. Winokur, Jr., Jan., 1969, *Econometrica*, Vol. 37(1), pp. 1-14.)

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

1

Things to Consider When Testing for Stationarity

- Testing for stationarity is not like testing to see if a coin is fair due to uncertainty about the underlying process.
- Can't just norform one test and accent or reject the null at sol For Augmented Dickey-Fuller and Phillips-Perron tests,

M H₀: NDR has a unit root

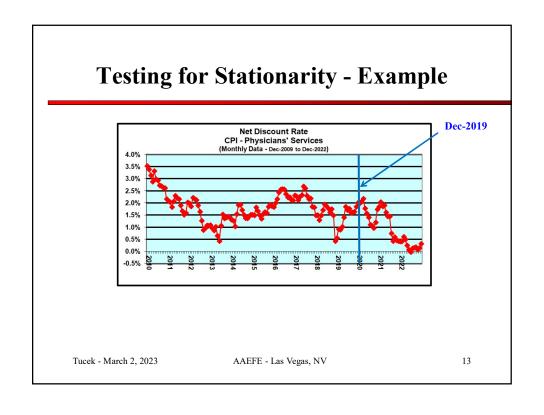
(How high is the confidence level at which the null is rejected?)

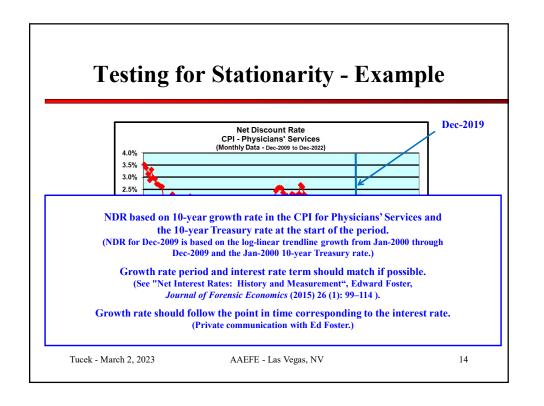
(How high is the confidence level at which the null is rejected?

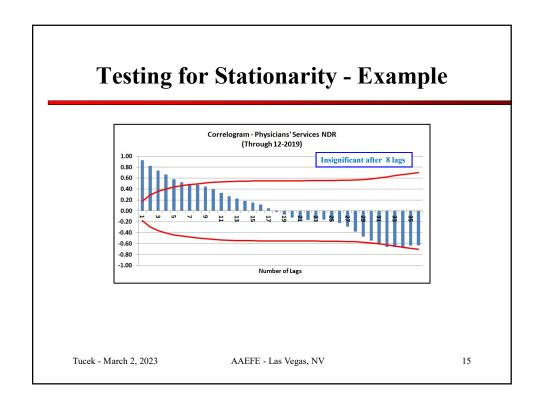
For KPSS test,

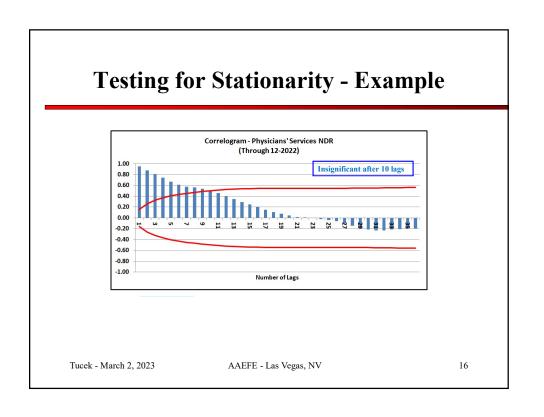
H₀: NDR is stationary

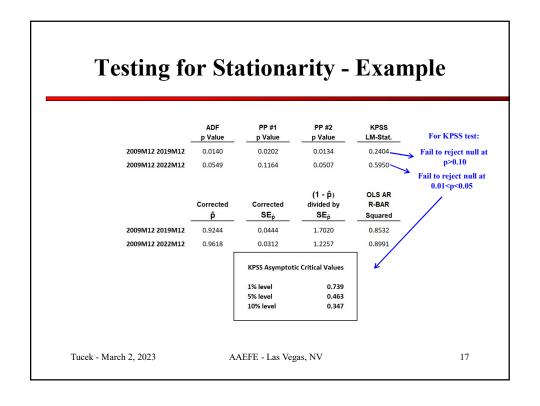
(How low must confidence level be in order to reject the null?)

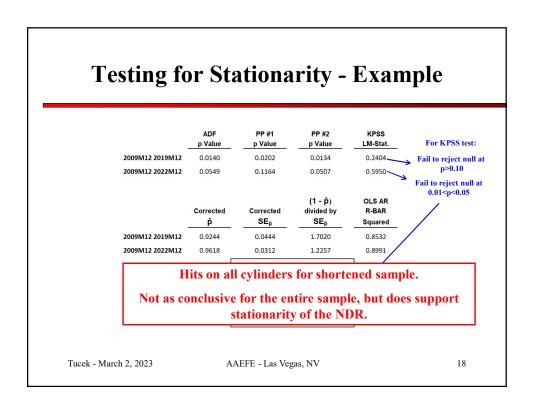

Inference, ica, Vol. 37(1),


e


illips-


Tucek - March 2, 2023


AAEFE - Las Vegas, NV



Testing for Stationarity - Example

	AR Model Specification	Long Run NDR	t-Statistic Long Run NDR	p-Value Long Run NDR	AR Model R-Squared	AR Model R-BAR Squared	AR Model D-W Statistic	*********** AR(1) Term		
2009M12 2019M12	AR(1)	2.03%	7.73	0.00000	0.85442	0.85196	1.656	0.00000		
"	AR(1), AR(2)	1.96%	9.31	0.00000	0.86001	0.85642	1.972	0.00000	0.02283	
н	AR(1), AR(2), AR(3)	2.00%	8.06	0.00000	0.86257	0.85783	2.004	0.00000	0.02289	0.21944
2009M12 2022M12	AR(1)	1.71%	3.82	0.00019	0.89975	0.89845	1.605	0.00000	1	
"	AR(1), AR(2)	1.69%	5.38	0.00000	0.90437	0.90250	1.977	0.00000	0.00347	-
n .	AR(1), AR(2), AR(3)	1.69%	4.42	0.00002	0.90528	0.90279	2.000	0.00000	0.00800	0.28715

Rule out AR(1), AR(2), AR(3) model based on p-Value for AR(3) term.

Pick AR(1), AR(2) model based on R-BAR Squared and D-W Statistic.

(Defer choice between sample periods for now.)

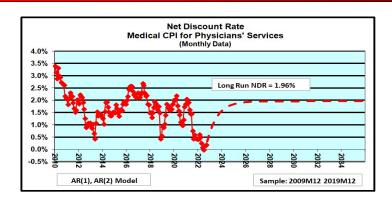
Tucek - March 2, 2023

AAEFE - Las Vegas, NV

19

Testing for Stationarity - Example

	AR Model Specification	Long Run NDR	t-Statistic Long Run NDR	p-Value Long Run NDR	AR Model R-Squared	AR Model R-BAR Squared	AR Model D-W Statistic		p-Values AR(2) Term	
2009M12 2019M12	AR(1)	2.03%	7.73	0.00000	0.85442	0.85196	1.656	0.00000		
u u	AR(1), AR(2)	1.96%	9.31	0.00000	0.86001	0.85642	1.972	0.00000	0.02283	
"	AR(1), AR(2), AR(3)	2.00%	8.06	0.00000	0.86257	0.85783	2.004	0.00000	0.02289	0.21944
2009M12 2022M12	AR(1)	1.71%	3.82	0.00019	0.89975	0.89845	1.605	0.00000		
"	AR(1), AR(2)	1.69%	5.38	0.00000	0.90437	0.90250	1.977	0.00000	0.00347	
II.	AR(1), AR(2), AR(3)	1.69%	4.42	0.00002	0.90528	0.90279	2.000	0.00000	0.00800	0.28715


Note that, if the NDR is stationary, the t-Statistics and p-Values from the AR model estimates are valid even if the NDR fails the stationarity tests based on 2009M12-2022M12 sample period.

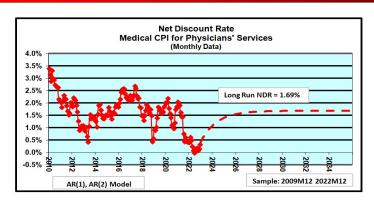
Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Testing for Stationarity – Example

(Estimate through 12-2019)

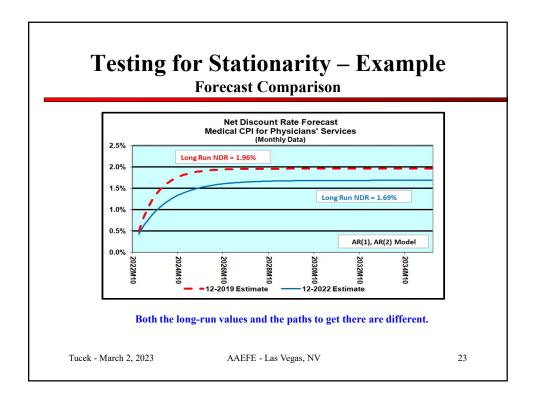
Long-run NDR reached after about 7 years. Reaches 1.5% after about 1 year.

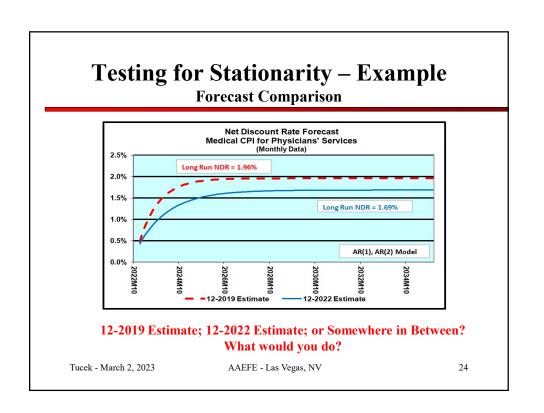

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

21

Testing for Stationarity – Example


(Estimate through 12-2022)



 $Long-run\ NDR\ reached\ after\ about\ 10\ years.\ \ Reaches\ 1.0\%\ after\ about\ 1\ year.$

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Forecasting Growth After the Pandemic

Why Use an NDR Approach Combined With an Autoregressive Model?

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

25

Main Alternatives to the NDR Approach

- · Historical growth rates and
 - Historical interest rates. (This is the NDR approach.)
 - Current interest rates.
- Forecasted growth rates and current interest rates.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Historical Growth Rate and Current Rates

- Produces biased results. (See "Argument for Use of the Net Discount Rate: The Flaw in Relying on Separate Growth and Discount Rates to Estimate the Expected Present Value of a Future Loss", *The Forecast*, Volume 36, Numbers 1 & 2, May 2022)
- Transition issue (for growth rate) must still be addressed.
- Implicit assumption that plaintiff will invest in a fixed portfolio typically a bond ladder or very short term Treasuries. (Contradicts plaintiff's expected behavior.)
- Has there been a structural change in the economy? (No way to tell until time has passed.)

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

27

Forecasted Growth Rate and Current Rates

- If all you do is take the forecast as given:
 - Still produces biased results.
 - Transition issue is addressed (for most forecasts).
 - Implicit assumption that plaintiff will invest in a fixed portfolio. (Contradicts plaintiff's expected behavior.)
 - Has there been a structural change in the economy? (No way to tell until time has passed.)

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Forecasted Growth Rate and Current Rates

- If all you do is take the forecast as given:
 - Still produces biased results.
 - Transition issue is addressed (for most forecasts).
 - Implicit assumption that plaintiff will invest in a fixed portfolio. (Contradicts plaintiff's expected behavior.)
 - Has there been a structural change in the economy? (No way to tell until time has passed.)
- If you are offering a professional opinion on the validity of the forecast, then there are more questions to be answered:
 - Has the underlying model estimate been updated?
 - What assumptions have been made about (1) timing and effect of QT; (2) persistence of inflation; (3) war in Ukraine . . . and the list goes on
 - Are there significant alternative forecast scenarios? If so, shouldn't you have an opinion on their likelihood of occurring?

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

29

Forecasting Future Growth and Investment Returns

Another Confounding Consideration: Lots of moving parts.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Lots of Moving Parts

- Historical Growth and Current Rates:
 - Problem reduced to two inputs.
 - Transition issue must still be addressed (with respect to the growth rate).
 - Implicit assumption that plaintiff will invest in a fixed portfolio.
 - Structural change issue still not addressed.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

3 1

Lots of Moving Parts

- Historical Growth and Current Rates
- Forecasted Growth and Current Rates
 - Underlying model considers more than just one input, but there are always exogenous variables and assumptions. (More variables is not necessarily better.)
 - Baseline outlook may not match the outlook underlying current rates.
 - Implicit assumption that plaintiff will invest in a fixed portfolio.
 - Structural change issue still not addressed.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

Lots of Moving Parts

- Historical Growth and Current Rates
- Forecasted Growth and Current Rates
- NDR and autoregressive model.
 - Problem reduced to two inputs.
 - Transition problem is resolved.
 - Have a basis for professional opinion on the forecasted NDR, if stationarity conclusion reached.
 - Stationarity conclusion resolves the structural change issue and AR model forecast includes an impact of the Great Disruption.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV

33

Forecasting Growth After the Pandemic: Conclusion

- Given stationarity, NDR approach combined with an autoregressive model to forecast the NDR is the best approach.
- Provides a transition from current situation to the long-run NDR.
- Addresses the many moving parts problem.
- Avoids the bias inherent in relying on separate growth and interest rates.
- Does not assume plaintiff will invest in a fixed-portfolio recognizes plaintiff's expected behavior.
- For both the truncated and complete sample periods, the Great Disruption has an impact better than just ignoring it.

Tucek - March 2, 2023

AAEFE - Las Vegas, NV